Comparison of sampling strategies and sparsifying transforms to improve compressed sensing diffusion spectrum imaging.

نویسندگان

  • Michael Paquette
  • Sylvain Merlet
  • Guillaume Gilbert
  • Rachid Deriche
  • Maxime Descoteaux
چکیده

PURPOSE Diffusion Spectrum Imaging enables to reconstruct the ensemble average propagator (EAP) at the expense of having to acquire a large number of measurements. Compressive sensing offers an efficient way to decrease the required number of measurements. The purpose of this work is to perform a thorough experimental comparison of three sampling strategies and six sparsifying transforms to show their impact when applied to accelerate compressive sensing-diffusion spectrum imaging. METHODS We propose a novel sampling scheme that assures uniform angular and random radial q-space samples. We also compare and implement six discrete sparse representations of the EAP and thoroughly evaluate them on synthetic and real data using metrics from the full EAP, kurtosis, and orientation distribution function. RESULTS The discrete wavelet transform with Cohen-Daubechies-Feauveau 9/7 wavelets and uniform angular sampling in combination with random radial sampling showed to be better than other tested techniques to accurately reconstruct the EAP and its features. CONCLUSION It is important to jointly optimize the sampling scheme and the sparsifying transform to obtain accelerated compressive sensing-diffusion spectrum imaging. Experiments on synthetic and real human brain data show that one can robustly recover both radial and angular EAP features while undersampling the acquisition to 64 measurements (undersampling factor of 4).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of sampling strategies and sparsifying transforms to improve Compressed Sensing DSI

Purpose:Diffusion Spectrum Imaging (DSI) enables to reconstruct the Ensemble Average Propagator (EAP) at the expense of having to acquire a large number of measurements. Compressive Sensing (CS) offers an efficient way to decrease the required number of measurements. The purpose of this work is to perform a thorough experimental comparison of 3 sampling strategies and 6 sparsifying transforms t...

متن کامل

Compressed sensing MRI with combined sparsifying transforms and smoothed l0 norm minimization

Undersampling the k-space is an efficient way to speed up the magnetic resonance imaging (MRI). Recently emerged compressed sensing MRI shows promising results. However, most of them only enforce the sparsity of images in single transform, e.g. total variation, wavelet, etc. In this paper, based on the principle of basis pursuit, we propose a new framework to combine sparsifying transforms in c...

متن کامل

Combined sparsifying transforms for compressed sensing MRI

In traditional compressed sensing MRI methods, single sparsifying transform limits the reconstruction quality because it cannot sparsely represent all types of image features. Based on the principle of basis pursuit, a method that combines sparsifying transforms to improve the sparsity of images is proposed. Simulation results demonstrate that the proposed method can well recover different type...

متن کامل

Comparison of MRI Under-Sampling Techniques for Compressed Sensing with Translation Invariant Wavelets Using FastTestCS: A Flexible Simulation Tool

A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to perform exceedingly well in CS by reducing repetitive line pattern image artifacts that may be observed when using orthogonal wavelets. To further establish its validity as a good ...

متن کامل

Accelerated diffusion spectrum imaging in the human brain using compressed sensing.

We developed a novel method to accelerate diffusion spectrum imaging using compressed sensing. The method can be applied to either reduce acquisition time of diffusion spectrum imaging acquisition without losing critical information or to improve the resolution in diffusion space without increasing scan time. Unlike parallel imaging, compressed sensing can be applied to reconstruct a sub-Nyquis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 73 1  شماره 

صفحات  -

تاریخ انتشار 2015